4,385 research outputs found

    iTrace: An Implicit Trust Inference Method for Trust-aware Collaborative Filtering

    Full text link
    The growth of Internet commerce has stimulated the use of collaborative filtering (CF) algorithms as recommender systems. A collaborative filtering (CF) algorithm recommends items of interest to the target user by leveraging the votes given by other similar users. In a standard CF framework, it is assumed that the credibility of every voting user is exactly the same with respect to the target user. This assumption is not satisfied and thus may lead to misleading recommendations in many practical applications. A natural countermeasure is to design a trust-aware CF (TaCF) algorithm, which can take account of the difference in the credibilities of the voting users when performing CF. To this end, this paper presents a trust inference approach, which can predict the implicit trust of the target user on every voting user from a sparse explicit trust matrix. Then an improved CF algorithm termed iTrace is proposed, which takes advantage of both the explicit and the predicted implicit trust to provide recommendations with the CF framework. An empirical evaluation on a public dataset demonstrates that the proposed algorithm provides a significant improvement in recommendation quality in terms of mean absolute error (MAE).Comment: 6 pages, 4 figures, 1 tabl

    Balancing Augmentation with Edge-Utility Filter for Signed GNNs

    Full text link
    Signed graph neural networks (SGNNs) has recently drawn more attention as many real-world networks are signed networks containing two types of edges: positive and negative. The existence of negative edges affects the SGNN robustness on two aspects. One is the semantic imbalance as the negative edges are usually hard to obtain though they can provide potentially useful information. The other is the structural unbalance, e.g. unbalanced triangles, an indication of incompatible relationship among nodes. In this paper, we propose a balancing augmentation method to address the above two aspects for SGNNs. Firstly, the utility of each negative edge is measured by calculating its occurrence in unbalanced structures. Secondly, the original signed graph is selectively augmented with the use of (1) an edge perturbation regulator to balance the number of positive and negative edges and to determine the ratio of perturbed edges to original edges and (2) an edge utility filter to remove the negative edges with low utility to make the graph structure more balanced. Finally, a SGNN is trained on the augmented graph which effectively explores the credible relationships. A detailed theoretical analysis is also conducted to prove the effectiveness of each module. Experiments on five real-world datasets in link prediction demonstrate that our method has the advantages of effectiveness and generalization and can significantly improve the performance of SGNN backbones.Comment: 16 page
    • …
    corecore